VERSION 1.2

POPULATIONS

ADOLESCENTS AND YOUNG ADULTS

Special considerations for asthma diagnosis and management in adolescents and young adults (aged 12–24 years), including psychosocial factors, differential diagnoses and transition to adult care

ABOUT

This PDF is a print-friendly reproduction of the content included in the Populations - Adolescents and young adults section of the Australian Asthma Handbook at asthmahandbook.org.au/populations/adolescents

Please note the content of this PDF reflects the Australian Asthma Handbook at publication of Version 1.2 (October 2016). For the most up-to-date content, please visit asthmahandbook.org.au

Please consider the environment if you are printing this PDF – to save paper and ink, it has been designed to be printed double-sided and in black and white.
ABBREVIATIONS

CFC chlorofluorocarbon
COPD chronic obstructive pulmonary disease
COX cyclo-oxygenase
ED emergency department
EIB exercise-induced bronchoconstriction
FEV₁ forced expiratory volume over one second
FVC forced vital capacity
FSANZ Food Standards Australia and New Zealand
GORD gastro-oesophageal reflux disease
HFA formulated with hydrofluoroalkane propellant
ICS inhaled corticosteroid
ICU intensive care unit
IgE Immunoglobulin E
IV intravenous
LABA long-acting beta₂-adrenergic receptor agonist
LAMA long-acting muscarinic antagonist
LTRA leukotriene receptor antagonist
MBS Medical Benefits Scheme
NIPPV non-invasive positive pressure ventilation
NSAIDs nonsteroidal anti-inflammatory drugs
OCS oral corticosteroids
OSA obstructive sleep apnoea
PaCO carbon dioxide partial pressure on blood gas analysis
PaO₂ oxygen partial pressure on blood gas analysis
PBS Pharmaceutical Benefits Scheme
PEF peak expiratory flow
pMDI pressurised metered-dose inhaler or ‘puffer’
SABA short-acting beta₂-adrenergic receptor agonist
LAMA long-acting muscarinic antagonist
TGA Therapeutic Goods Administration

NATIONAL ASTHMA COUNCIL AUSTRALIA

ABN 61 058 044 634
Suite 104, Level 1, 153-161 Park Street South
Melbourne, VIC 3205, Australia
Tel: 03 9929 4333
Fax: 03 9929 4300
Email: nac@nationalasthma.org.au
Website: nationalasthma.org.au

ENDORSEMENT

The Australian Asthma Handbook has been officially endorsed by:

- The Royal Australian College of General Practitioners (RACGP)
- The Australian Primary Health Care Nurses Association (APNA)
- The Thoracic Society of Australia and New Zealand (TSANZ)

SPONSORS

National Asthma Council Australia would like to acknowledge the support of the sponsors of Version 1.2 of the Australian Asthma Handbook:

- AstraZeneca Australia
- Mundipharma Australia
- Novartis Australia

DISCLAIMER

The Australian Asthma Handbook has been compiled by the National Asthma Council Australia for use by general practitioners, pharmacists, asthma educators, nurses and other health professionals and healthcare students. The information and treatment protocols contained in the Australian Asthma Handbook are based on current evidence and medical knowledge and practice as at the date of publication and to the best of our knowledge. Although reasonable care has been taken in the preparation of the Australian Asthma Handbook, the National Asthma Council Australia makes no representation or warranty as to the accuracy, completeness, currency or reliability of its contents.

The information and treatment protocols contained in the Australian Asthma Handbook are intended as a general guide only and are not intended to avoid the necessity for the individual examination and assessment of appropriate courses of treatment on a case-by-case basis. To the maximum extent permitted by law, acknowledging that provisions of the Australia Consumer Law may have application and cannot be excluded, the National Asthma Council Australia, and its employees, directors, officers, agents and affiliates exclude liability (including but not limited to liability for any loss, damage or personal injury resulting from negligence) which may arise from use of the Australian Asthma Handbook or from treating asthma according to the guidelines therein.
Asthma in adolescents and young adults

Overview

This section deals with special considerations for asthma in adolescents and young adults. It should be used in conjunction with the general Diagnosis and Management sections of this handbook.

For younger adolescents, the general guidance for diagnosing and managing asthma in children will apply in most situations. By mid-adolescence (around 14–16 years), the general guidance for diagnosing and managing asthma in adults will apply in most situations.

Note: Various age ranges are used to define adolescence.¹ In this handbook ‘adolescents’ refers to people aged approximately 12–18 years and ‘young adults’ refers to people aged 19–24 years, acknowledging that hormonal changes that accompany puberty may begin before age 12 and maturation may continue beyond age 24.

In this section

- General considerations
- Investigation
- Management
- Self-management support

References

General considerations when providing health care for adolescents and young adults

Recommendations

By mid-adolescence (around 14–16 years), provide medical management of asthma as for adults (e.g. medication options, doses).

Note: Whether the individual is considered to be a child or adult for the purposes of prescribing will depend on the individual's size and clinical factors, TGA-approved product information for medicines, and PBS subsidisation criteria.

How this recommendation was developed

Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).

If parents or carers are present, arrange to see adolescents alone for part of the consultation so that you can confidentially discuss sensitive issues like adherence to asthma medicines and exposure to smoke from tobacco or other drugs.

How this recommendation was developed

Adapted from existing guidance
Based on reliable clinical practice guideline(s) or position statement(s):

- The Royal Australasian College of Physicians, 2008

Discuss confidentiality with the patient and agree on which of their personal information will not be shared with anyone else and which can be discussed with parents or passed on to other healthcare professionals.

How this recommendation was developed

Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).

Assess psychosocial status so that you can identify and manage any factors that could affect their asthma management and ensure that self-management advice is appropriate to the individual's stage of psychosocial development.

How this recommendation was developed

Consensus
Based on clinical experience and expert opinion (informed by evidence, where available), with particular reference to the following source(s):

- Bender, 2006
- Sawyer et al. 2012
- The Royal Australasian College of Physicians, 2008
- Van de Ven et al. 2009
Consider the person’s health beliefs, cultural perspective and family circumstances that may affect asthma management.

How this recommendation was developed

Consensus

Based on clinical experience and expert opinion (informed by evidence, where available).

More information

Confidentiality issues for adolescents

Adolescents’ concerns about confidentiality prevent them using health care services, especially if substance use is likely to be raised. Adolescents are more likely to disclose information about health risk behaviours, and are more likely to return for review, if they know that confidential information will not be revealed to their parents or others. Adolescents are more likely to disclose information about health risk behaviours, and are more likely to return for review, if they know that confidential information will not be revealed to their parents or others.

When adolescents are accompanied by parents or carers, health care providers should consider seeing the adolescent alone for part of each consultation.

Health professionals should discuss confidentiality and its limits with adolescents. Adolescents are more likely to disclose information about health risk behaviours, and are more likely to return for review, if they know that confidential information will not be revealed to their parents or others.

Health professionals need to clearly explain which personal health information can be confidential and which must be shared with parents, and keep parents informed.

Health care providers should advise adolescents that they can obtain their own Medicare card once they turn 15.

Go to: Royal Australasian College of Physicians’ *Working with young people* online resource (see Privacy and confidentiality in adolescent health care in Topic 2: Ethical and legal issues)

Go to: Australian Government Department of Human Services’ *Young people becoming independent* webpage

Psychosocial factors affecting adolescent health

Adolescence is a time of rapid growth and physical, cognitive, emotional and social development. An adolescent’s age is not a reliable indicator of maturity in each of these areas.

Mental health disorders (e.g. depression, anxiety, eating disorders) are common and clinically important among young people. A significant proportion of adult mental health problems emerge during adolescence.

Adolescence is also a time when people can begin risky behaviours (e.g. smoking, poor eating habits, physical inactivity, and drug and alcohol use), which can continue into adulthood. Although smoking rates among adolescents and young people are declining, approximately 6% of adolescents aged 15–17 years smoke, and 4% smoke at least daily. Smoking rates are higher among Aboriginal and Torres Strait Islander young people, young people living in rural and remote communities, and young people of lower socioeconomic status.

Adolescents with chronic disease show higher rates of health risk behaviours than healthy adolescents. Some risk behaviours are based on incorrect health beliefs (e.g. the myth that smoking cannabis is good for asthma).

Risk-taking behaviour – as well as poor understanding of their health condition – may contribute to the higher rate of food-induced fatal anaphylaxis among adolescents and young adults, compared with other age groups.

Depression, risk behaviours and poor adherence to medicines are interrelated. Adolescents with asthma who adhere poorly to asthma treatment and hide their asthma are more likely to start smoking than other adolescents with asthma.

Among adolescent boys, those with lower quality of life are most likely to start smoking.

Adolescents often wish to discuss their health concerns with health professionals but are reluctant to discuss sensitive issues unless asked directly and confidentially.

Psychosocial assessment in adolescents

The Royal Australasian College of Physicians recommends that all primary care health professionals should routinely assess psychosocial health of people aged 10–24 years.
Routine psychosocial health assessment helps the health professional identify mental health states that may affect chronic disease management, identify and understand risk behaviours and strengths, take psychosocial circumstances into account when managing chronic disease, and promotes engagement between the health professional and patient. The Royal Australasian College of General Practitioners and Royal Australasian College of Physicians suggest that health professionals can use the HEADSS framework (Home, Education and Employment, Eating and exercise, Activities and peers, Drugs, Sexuality, Suicide and depression, Safety, Spirituality). A list of screening and assessment tools appropriate for adolescents and young adults is included in beyondblue’s Clinical practice guidelines: Depression in adolescents and young adults (2010).

Impact of puberty on asthma

In the past, it was thought that children typically ‘outgrew’ asthma due to maturation of the autonomic and central nervous systems under the effect of sex steroids during puberty. However, there is little evidence to support this assumption. Puberty does not predict remission of asthma. Almost two-thirds of children with chronic asthma have persistent symptoms throughout puberty.

Early puberty has been reported to be an independent risk factor for the persistence of asthma into adolescence, and for the severity of asthma in adulthood. The mechanism for this association is unclear, and might involve the effects of hormonal changes on reactivity of airways or risk factors that are common to both asthma and early puberty.

Increased BMI in girls has been associated with both early puberty and increased asthma risk.

Australian data show that more boys than girls experience remission of asthma during adolescence (based on 2007–2008 data):

- the prevalence of current asthma is higher for boys than girls among children aged 0–14 years, and higher for women among people aged 15 years and over
- the prevalence of current asthma in children aged 10–14 years is approximately 12% for boys and 7% for girls
- the prevalence of current asthma in adolescents and young adults aged 15–24 years is approximately 11% in both sexes.

Asthma can worsen or improve during adolescence; close monitoring is necessary so that medicines can be adjusted to maintain good asthma control at the lowest effective doses. If attempted back-titration of an adolescent’s preventer dose or step-down in the treatment regimen results in worsening of asthma symptoms, this experience can help the person understand why it is necessary to take these medicines regularly. Health professionals can make unsuccessful back-titration an opportunity to reinforce self-management education.

Asthma can occur for the first time during adolescence, more commonly in girls than boys. The true prevalence of asthma in adolescents is difficult to estimate because of under- and over-diagnosis.

Adherence to preventer treatment: adults and adolescents

Most patients do not take their preventer medication as often as prescribed, particularly when symptoms improve, or are mild or infrequent. Whenever asthma control is poor despite apparently adequate treatment, poor adherence, as well as poor inhaler technique, are probable reasons to consider.

Poor adherence may be intentional and/or unintentional. Intentional poor adherence may be due to the person’s belief that the medicine is not necessary, or to perceived or actual adverse effects. Unintentional poor adherence may be due to forgetting or cost barriers.

Common barriers to the correct use of preventers include:

- being unable to afford the cost of medicines or consultations to adjust the regimen
- concerns about side effects
- interference of the regimen with the person’s lifestyle
- forgetting to take medicines
- lack of understanding of the reason for taking the medicines
- inability to use the inhaler device correctly due to physical or cognitive factors
- health beliefs that are in conflict with the belief that the prescribed medicines are effective, necessary or safe (e.g. a belief that the prescribed preventer dose is ‘too strong’ or only for flare-ups, a belief that asthma can be overcome by
psychological effort, a belief that complementary and alternative therapies are more effective or appropriate than prescribed medicines, mistrust of the health professional).

Adherence to preventers is significantly improved when patients are given the opportunity to negotiate the treatment regimen based on their goals and preferences.19

Assessment of adherence requires an open, non-judgemental approach.

Accredited pharmacists who undertake Home Medicines Reviews can assess adherence while conducting a review.

Table. Suggested questions to ask adults and older adolescents when assessing adherence to treatment

<table>
<thead>
<tr>
<th>1. Many people don't take their medication as prescribed. In the last four weeks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ how many days a week would you have taken your preventer medication? None at all? One? Two? (etc).</td>
</tr>
<tr>
<td>◦ how many times a day would you take it? Morning only? Evening only? Morning and evening? (or other)</td>
</tr>
<tr>
<td>◦ each time, how many puffs would you take? One? Two? (etc).</td>
</tr>
</tbody>
</table>

| 2. Do you find it easier to remember your medication in the morning, or the evening? |

Asset ID: 38

Resources for health professionals working with adolescents

Go to: Medicare's Home Medicines Review (HMR)

Go to: The Royal Australasian College of Physicians' Working with young people online resource

Go to: Headspace: Australia's National Youth Mental Health Foundation

Go to: Inspire Foundation

Go to: Reachout

Go to: The Royal Children’s Hospital Melbourne's Transition – for health professionals

Go to: NSW Agency for Clinical Innovation's Transition planning checklist

Go to: NSW Centre for Advancement of Adolescent Health, The Children's Hospital at Westmead's Adolescent health GP resources

Go to: ChiPS (Chronic Illness Peer Support)

Go to: Relationships Australia

Go to: Smarter than Smoking

Go to: The Children’s Hospital at Westmead’s Kids Quit smoking cessation brief interventions

References

Investigating asthma-like symptoms in adolescents and young adults

Recommendations

Use spirometry to assess lung function objectively and to confirm the diagnosis, even if the person had asthma during childhood.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available), with particular reference to the following source(s):

- Towns and Asperen, 2009
- Weinberger and Abu-Hasan, 2007
- Yeatts et al. 2003

For adolescents with exercise-related symptoms, consider objective tests (e.g. exercise testing, bronchial provocation (challenge) tests) or referral to investigate the possibility of non-asthma causes such as dyspnoea due to poor cardiopulmonary fitness, hyperventilation or upper airway dysfunction.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available), with particular reference to the following source(s):

- Tilles, 2010

Ask about smoking and exposure to other people’s tobacco smoke.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).

In adolescent girls, consider whether asthma symptoms are affected by the menstrual cycle.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).

More information
Impact of puberty on asthma

In the past, it was thought that children typically ‘outgrew’ asthma due to maturation of the autonomic and central nervous systems under the effect of sex steroids during puberty. However, there is little evidence to support this assumption. Puberty does not predict remission of asthma. Almost two-thirds of children with chronic asthma have persistent symptoms throughout puberty.

Early puberty has been reported to be an independent risk factor for the persistence of asthma into adolescence, and for the severity of asthma in adulthood. The mechanism for this association is unclear, and might involve the effects of hormonal changes on reactivity of airways or risk factors that are common to both asthma and early puberty.

Increased BMI in girls has been associated with both early puberty and increased asthma risk.

Australian data show that more boys than girls experience remission of asthma during adolescence (based on 2007–2008 data):

- the prevalence of current asthma is higher for boys than girls among children aged 0–14 years, and higher for women among people aged 15 years and over
- the prevalence of current asthma in children aged 10–14 years is approximately 12% for boys and 7% for girls
- the prevalence of current asthma in adolescents and young adults aged 15–24 years is approximately 11% in both sexes.

Asthma can worsen or improve during adolescence; close monitoring is necessary so that medicines can be adjusted to maintain good asthma control at the lowest effective doses. If attempted back-titration of an adolescent’s preventer dose or step-down in the treatment regimen results in worsening of asthma symptoms, this experience can help the person understand why it is necessary to take these medicines regularly. Health professionals can make unsuccessful back-titration an opportunity to reinforce self-management education.

Asthma can occur for the first time during adolescence, more commonly in girls than boys. The true prevalence of asthma in adolescents is difficult to estimate because of under- and over-diagnosis.

Assessment of asthma in adolescents

The majority of adolescents with asthma have normal lung function despite experiencing significant asthma symptoms.

Lung function may not be a strong predictor of future flare-ups or correlate with current symptoms in adolescents.

Assessment of asthma in adolescents is usually similar to assessment in adults, taking into account confidentiality and psychosocial factors that are especially important in this age group.

At each visit, it is useful to ask about days absent from school due to asthma.

Table. Definition of levels of recent asthma symptom control in adults and adolescents (regardless of current treatment regimen)

<table>
<thead>
<tr>
<th>Good control</th>
<th>Partial control</th>
<th>Poor control</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of:</td>
<td>One or two of:</td>
<td>Three or more of:</td>
</tr>
<tr>
<td>• Daytime symptoms ≤2 days per week†</td>
<td>• Daytime symptoms >2 days per week</td>
<td>• Daytime symptoms >2 days per week†</td>
</tr>
<tr>
<td>• Need for reliever ≤2 days per week†</td>
<td>• Need for reliever >2 days per week†</td>
<td>• Need for reliever >2 days per week†</td>
</tr>
<tr>
<td>• No limitation of activities</td>
<td>• Any limitation of activities</td>
<td>• Any limitation of activities</td>
</tr>
<tr>
<td>• No symptoms during night or on waking</td>
<td>• Any symptoms during night or on waking</td>
<td></td>
</tr>
</tbody>
</table>

† Not including SABA taken prophylactically before exercise. (Record this separately and take into account when assessing management.)

Note: Recent asthma symptom control is based on symptoms over the previous 4 weeks.

Adapted from:
Diagnostic difficulties when investigating asthma-like symptoms in adolescents

Asthma is commonly misdiagnosed in young people presenting with exercise-related symptoms or cough. \(^1\) Conditions associated with dyspnoea include hyperventilation, anxiety, and poor cardiopulmonary fitness. \(^2\)

Both denial and overplay of symptoms has been observed among adolescents. \(^1\) Adolescents with new or re-emerging asthma symptoms may deny their symptoms. \(^3\) US data suggest that risk factors for undiagnosed asthma among adolescents include female sex, smoking (current smoking and exposure to others’ smoke), low socioeconomic status, family problems, low physical activity and high body mass. \(^3\)

Exercise-related symptoms in adolescents

In adolescents, exercise-related wheezing and breathlessness are poor predictors of exercise-induced bronchoconstriction. Only a minority of adolescents referred for assessment of exercise-induced respiratory symptoms show objective evidence of exercise-induced bronchoconstriction. \(^10\)

For adolescents with exercise-related symptoms, common conditions that should be considered in the differential diagnosis include poor cardiopulmonary fitness, exercise-induced upper airway dysfunction and exercise-induced hyperventilation. \(^1, 5\)

In addition to spirometry, other objective tests (e.g. cardiopulmonary fitness testing, bronchial provocation tests) may be helpful to clarify the diagnosis and inform management.

Psychosocial factors affecting adolescent health

Adolescence is a time of rapid growth and physical, cognitive, emotional and social development. An adolescent’s age is not a reliable indicator of maturity in each of these areas. \(^11\)

Mental health disorders (e.g. depression, anxiety, eating disorders) are common and clinically important among young people. \(^11\) A significant proportion of adult mental health problems emerge during adolescence. \(^11\)

Adolescence is also a time when people can begin risky behaviours (e.g. smoking, poor eating habits, physical inactivity, and drug and alcohol use), which can continue into adulthood. \(^11, 12\) Although smoking rates among adolescents and young people are declining, \(^13\) approximately 6% of adolescents aged 15–17 years smoke, and 4% smoke at least daily. \(^14\) Smoking rates are higher among Aboriginal and Torres Strait Islander young people, young people living in rural and remote communities, and young people of lower socioeconomic status. \(^15, 13\)

Adolescents with chronic disease show higher rates of health risk behaviours than healthy adolescents. \(^11, 16\) Some risk behaviours are based on incorrect health beliefs (e.g. the myth that smoking cannabis is good for asthma).

Risk-taking behaviour – as well as poor understanding of their health condition – may contribute to the higher rate of food-induced fatal anaphylaxis among adolescents and young adults, compared with other age groups. \(^17\)

Depression, risk behaviours and poor adherence to medicines are interrelated. \(^18\) Adolescents with asthma who adhere poorly to asthma treatment and hide their asthma are more likely to start smoking than other adolescents with asthma. \(^19\)

Among adolescent boys, those with lower quality of life are most likely to start smoking. \(^19\)

Adolescents often wish to discuss their health concerns with health professionals but are reluctant to discuss sensitive issues unless asked directly and confidentially. \(^11\)

Physiological and psychological changes

Stress, anxiety and extreme emotions
Some patients report asthma flare-ups and asthma symptoms in response to stress and extreme emotions.20, 21 Adolescents with asthma may experience breathlessness in response to stress (without changes in lung function or other asthma symptoms).22

▶ See: \textit{Investigating asthma-like symptoms in adolescents and young adults}

Laughter

Laughing is a common trigger for wheeze in infants. In children, the presence of respiratory symptoms that are triggered by laughter increases the probability of symptoms being due to asthma.

▶ See: \textit{Diagnosing asthma in children}

Hormonal changes

Asthma may worsen during the premenstrual phase in up to 40\% of women, possibly due to a reduced response to corticosteroids and bronchodilators.23 However, this rarely causes severe flare-ups.23

Perimenstrual worsening asthma may be relatively common among women with severe or poorly controlled asthma, and may share risk factors with aspirin-exacerbated respiratory disease.24

Asthma control worsens during pregnancy in about one third of women with asthma.25 During pregnancy, approximately 6\% of women with asthma are hospitalised with a severe asthma flare-up.26, 27

▶ See: \textit{Managing asthma during pregnancy}

Sexual activity

Sexual activity may trigger asthma symptoms possibly due to physical exertion (exercise-induced bronchoconstriction), heightened emotion, or a combination of these factors. Exposure to dust mite allergens in bedding may also be a trigger for people who are sensitised.

People with asthma may experience limitation to sexual activity due to asthma or be concerned about the effect of their asthma on their sex life.28, 29 However, patients are unlikely to mention concerns about sexual activity to their doctor.29

Practical information for patients about sex and asthma is available from Asthma Australia.

▶ Go to: Asthma Australia’s Triggers webpage

See: \textit{Investigation and management of exercise-induced bronchoconstriction}

Resources for health professionals working with adolescents

▶ Go to: The Royal Australasian College of Physicians’ Working with young people online resource

Go to: Headspace: Australia’s National Youth Mental Health Foundation

Go to: Inspire Foundation

Go to: Reachout

Go to: The Royal Children’s Hospital Melbourne’s Transition – for health professionals

Go to: NSW Agency for Clinical Innovation’s Transition planning checklist

Go to: NSW Centre for Advancement of Adolescent Health, The Children’s Hospital at Westmead’s Adolescent health GP resources

Go to: ChIPS (Chronic Illness Peer Support)

Go to: Relationships Australia

Go to: Smarter than Smoking

Go to: The Children’s Hospital at Westmead’s Kids Quit smoking cessation brief interventions

References

11

Assessing and managing asthma in adolescents and young adults

Recommendations

By mid-adolescence (around 14–16 years), consider applying asthma management guidance for adults in most situations.

Note: Whether the individual is considered to be a child or adult for the purposes of prescribing will depend on the individual’s size and clinical factors, TGA-approved product information for medicines, and PBS subsidisation criteria.

How this recommendation was developed

Consensus

Based on clinical experience and expert opinion (informed by evidence, where available).

For patients who report the diagnosis of asthma made in the past or elsewhere, confirm the diagnosis if possible.

Table. Confirming the diagnosis of asthma in a person using preventer treatment

Please view and print this figure separately: https://www.asthmahandbook.org.au/table/show/9

How this recommendation was developed

Consensus

Based on clinical experience and expert opinion (informed by evidence, where available), with particular reference to the following source(s):

- Aaron et al. 2008¹
- Lucas et al. 2008²
- Luks et al. 2010³
- Marklund et al. 1999⁴

Consider whether exercise-related symptoms may be due to a non-asthma cause such as poor cardiopulmonary fitness (particularly in obese patients), upper airway dysfunction, hyperventilation or anxiety.

How this recommendation was developed

Consensus

Based on clinical experience and expert opinion (informed by evidence, where available), with particular reference to the following source(s):

- British Thoracic Society and Scottish Intercollegiate Guidelines Network, 2008⁵
- Tilles, 2010⁶
- Rietveld et al. 1999⁷

Plan regular asthma review as for adults. Explain that asthma often changes during these years so it is important to keep adjusting the treatment to maintain good control at the lowest effective dose.

Table. Risk factors for adverse asthma outcomes in adults and adolescents

Please view and print this figure separately: https://www.asthmahandbook.org.au/table/show/40
For adolescents taking regular inhaled corticosteroid whose asthma has been well controlled for at least 3 months, try reducing the dose or stepping down by one step while monitoring. If well controlled for at least 3 months on the lowest dose, consider a trial cessation of inhaled corticosteroid.

Note: For those in mid-to-late adolescence, follow the guidance for adults

Figure. Stepped approach to adjusting asthma medication in children
Please view and print this figure separately: https://www.asthmahandbook.org.au/figure/show/18

Figure. Stepped approach to adjusting asthma medication in adults
Please view and print this figure separately: https://www.asthmahandbook.org.au/figure/show/31

When assessing the causes of poor asthma control, consider psychosocial and behavioural factors such as non-adherence to preventer medicines, smoking or exposure to other people’s tobacco smoke.

If adherence to preventer medicines is inadequate, explore barriers and motivating factors.

Assess and manage comorbid conditions, lifestyle and psychosocial factors that could affect asthma:

- encourage adequate physical activity and healthy eating
- repeatedly assess smoking status and offer help to quit
- manage obesity according to national guidelines
- identify and manage allergic rhinitis, mental health conditions (e.g. depression and anxiety), gastro-oesophageal reflux disease and sleep disorders
- identify and manage psychosocial risk factors.

Table. Interrelated psychosocial risk factors for poor asthma control in adolescents
Poor adherence to treatment
Denying or disregarding asthma symptoms
Avoiding regular review appointments
Life events (new school, moving house, family disruption, absent parent)
Family problems (e.g. family conflict, family dysfunction)
Psychological distress (e.g. feelings of hopelessness, bereavement or recent loss)
Mental health problems (e.g. depression, emerging mood disorders)
Risky use of alcohol/other substances
Communication problems

Risk behaviours or disregard of symptoms may indicate emerging mental health problems. Poor adherence can be an indicator of family problems, life events and psychological distress.

Asset ID: 70

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).

For girls and women, assess whether flare-ups are affected by the menstrual cycle. For girls and women with predictable perimenstrual worsening of asthma symptoms, consider hormonal management or refer for investigation.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available), with particular reference to the following source(s):

- Boulet, 2009
- Rao et al. 2013

In pharmacies, ask adolescents and young adults buying non-prescription relievers when they last saw their doctor, and encourage asthma check-ups.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).

If the person has been seeing a paediatric respiratory physician, arrange a new referral to a respiratory physician who treats adults, when appropriate. Discuss the transition to adult health care and check that the young person is satisfied with the adult services.

How this recommendation was developed
Consensus
Based on clinical experience and expert opinion (informed by evidence, where available).
Diagnostic difficulties when investigating asthma-like symptoms in adolescents

Asthma is commonly misdiagnosed in young people presenting with exercise-related symptoms or cough. Conditions associated with dyspnoea include hyperventilation, anxiety, and poor cardiopulmonary fitness.

Both denial and overplay of symptoms has been observed among adolescents. Adolescents with new or re-emerging asthma symptoms may deny their symptoms. US data suggest that risk factors for undiagnosed asthma among adolescents include female sex, smoking (current smoking and exposure to others' smoke), low socioeconomic status, family problems, low physical activity and high body mass.

Exercise-related symptoms in adolescents

In adolescents, exercise-related wheezing and breathlessness are poor predictors of exercise-induced bronchoconstriction. Only a minority of adolescents referred for assessment of exercise-induced respiratory symptoms show objective evidence of exercise-induced bronchoconstriction.

For adolescents with exercise-related symptoms, common conditions that should be considered in the differential diagnosis include poor cardiopulmonary fitness, exercise-induced upper airway dysfunction and exercise-induced hyperventilation.

In addition to spirometry, other objective tests (e.g. cardiopulmonary fitness testing, bronchial provocation tests) may be helpful to clarify the diagnosis and inform management.

► See: *Investigation and management of exercise-induced bronchoconstriction*

Physiological and psychological changes

Stress, anxiety and extreme emotions

Some patients report asthma flare-ups and asthma symptoms in response to stress and extreme emotions. Adolescents with asthma may experience breathlessness in response to stress (without changes in lung function or other asthma symptoms).

► See: *Investigating asthma-like symptoms in adolescents and young adults*

Laughter

Laughing is a common trigger for wheeze in infants. In children, the presence of respiratory symptoms that are triggered by laughter increases the probability of symptoms being due to asthma.

► See: *Diagnosing asthma in children*

Hormonal changes

Asthma may worsen during the premenstrual phase in up to 40% of women, possibly due to a reduced response to corticosteroids and bronchodilators. However, this rarely causes severe flare-ups.

Perimenstrual worsening asthma may be relatively common among women with severe or poorly controlled asthma, and may share risk factors with aspirin-exacerbated respiratory disease.

Asthma control worsens during pregnancy in about one third of women with asthma. During pregnancy, approximately 6% of women with asthma are hospitalised with a severe asthma flare-up.

► See: *Managing asthma during pregnancy*

Sexual activity

Sexual activity may trigger asthma symptoms possibly due to physical exertion (exercise-induced bronchoconstriction), heightened emotion, or a combination of these factors. Exposure to dust mite allergens in bedding may also be a trigger for people who are sensitised.

People with asthma may experience limitation to sexual activity due to asthma or be concerned about the effect of their asthma on their sex life. However, patients are unlikely to mention concerns about sexual activity to their doctor.
Practical information for patients about sex and asthma is available from Asthma Australia.

Impact of puberty on asthma

In the past, it was thought that children typically ‘outgrew’ asthma due to maturation of the autonomic and central nervous systems under the effect of sex steroids during puberty. However, there is little evidence to support this assumption. Puberty does not predict remission of asthma. Almost two-thirds of children with chronic asthma have persistent symptoms throughout puberty.

Early puberty has been reported to be an independent risk factor for the persistence of asthma into adolescence, and for the severity of asthma in adulthood. The mechanism for this association is unclear, and might involve the effects of hormonal changes on reactivity of airways or risk factors that are common to both asthma and early puberty.

Increased BMI in girls has been associated with both early puberty and increased asthma risk. Australian data show that more boys than girls experience remission of asthma during adolescence (based on 2007–2008 data):

- the prevalence of current asthma is higher for boys than girls among children aged 0–14 years, and higher for women among people aged 15 years and over
- the prevalence of current asthma in children aged 10–14 years is approximately 12% for boys and 7% for girls
- the prevalence of current asthma in adolescents and young adults aged 15–24 years is approximately 11% in both sexes.

Asthma can worsen or improve during adolescence; close monitoring is necessary so that medicines can be adjusted to maintain good asthma control at the lowest effective doses. If attempted back-titration of an adolescent’s preventer dose or step-down in the treatment regimen results in worsening of asthma symptoms, this experience can help the person understand why it is necessary to take these medicines regularly. Health professionals can make unsuccessful back-titration an opportunity to reinforce self-management education.

Asthma can occur for the first time during adolescence, more commonly in girls than boys. The true prevalence of asthma in adolescents is difficult to estimate because of under- and over-diagnosis.

Transition to adult asthma care

The late teens and early twenties can be a dangerous period for young people with asthma because GPs and parents often assume that the parent’s good management of their child’s asthma will automatically continue as the child grows up. Good self-management cannot be assumed, and health professionals need to carefully check the patient’s understanding of their asthma and its treatment.

Equipping and supporting an adolescent with a chronic disease to take over self-management of their condition as they grow up and make a smooth transition to adult health services requires planning. Some experts consider this in three phases:

- early stage (12–14 years) – the adolescent begins to participate in his or her own care
- middle stage (15–16 years) – the adolescent gains skills and information to take over self-care
- late stage (17–18 years) – the young person moves into the adult system.

Resources for health professionals working with adolescents

Go to: The Royal Australasian College of Physicians’ Working with young people online resource
Go to: Headspace: Australia’s National Youth Mental Health Foundation
Go to: Inspire Foundation
Go to: Reachout
Go to: The Royal Children’s Hospital Melbourne’s Transition – for health professionals
Go to: NSW Agency for Clinical Innovation’s Transition planning checklist
Go to: NSW Centre for Advancement of Adolescent Health, The Children’s Hospital at Westmead’s Adolescent health GP resources
Go to: CHIPS (Chronic Illness Peer Support)
Stepping down regular asthma medicines in adults

The main aim of medical treatment for asthma is to achieve good asthma control and minimise the risks of asthma with the lowest effective dose of preventer medicines for each individual.

Stepping down is considered when the patient has experienced good asthma control for 2–3 months and is at low risk of flare-ups.

Figure. Stepped approach to adjusting asthma medication in adults

Please view and print this figure separately: https://www.asthmahandbook.org.au/figure/show/31

General tips

It is important to ascertain the person’s actual treatment regimen before stepping down, because many patients may already be taking their preventer only intermittently.

Those who deliberately avoid taking their preventer due to concerns about inhaled corticosteroids may accept regular daily treatment at a lower dose, with an action plan to deal with flare-ups.

Steps down should be planned before the patient has finished their current inhaler, so that the previous dose can be resumed immediately if asthma control deteriorates.

Patients should be advised to step back up if they or their clinician judge that their asthma is worse overall (not just after the first time they experience asthma symptoms after stepping down). Patients and clinicians should agree beforehand on criteria for worsening asthma control.

Some patients are very concerned about reducing their dose (despite the risk of treatment-related adverse effects) and may prefer to stay on high doses for long periods. To enable early detection of deterioration in control during step-down, patients can be asked to monitor their peak flow for 2 weeks before, and 3–4 weeks after, the dose reduction.

Stepping down inhaled corticosteroid dose

For many patients with well-controlled asthma taking inhaled corticosteroid/long-acting beta$_2$ agonist combinations or inhaled corticosteroids alone, the inhaled corticosteroid dose can be reduced without loss of asthma control if downward dose adjustments are made gradually.\(^23,\,24\)

The dose can be reduced by stepping down through the available formulations.

Note: TGA-registered fluticasone furoate/vilanterol combinations contain moderate-to-high doses of inhaled corticosteroid (100/25 mcg and 200/25 mcg respectively).

Ceasing inhaled corticosteroid

Patients with well-controlled asthma who stop taking regular low-dose inhaled corticosteroid treatment have an increased risk of flare-ups, compared with those who continue inhaled corticosteroids.\(^25\)

It may sometimes be necessary to stop treatment temporarily in order to confirm the diagnosis of asthma in a person taking inhaled corticosteroids. In this situation, close monitoring of symptom control is needed.

Table. Confirming the diagnosis of asthma in a person using preventer treatment

Please view and print this figure separately: https://www.asthmahandbook.org.au/table/show/9

Table. Definitions of ICS dose levels in adults

<table>
<thead>
<tr>
<th>Inhaled corticosteroid</th>
<th>Daily dose (mcg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Beclometasone dipropionate</td>
<td>100–200</td>
</tr>
<tr>
<td>Budesonide</td>
<td>200–400</td>
</tr>
<tr>
<td>Inhaled corticosteroid</td>
<td>Daily dose (mcg)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Ciclesonide</td>
<td>80–160</td>
</tr>
<tr>
<td>Fluticasone furoate*</td>
<td>—</td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td>100–200</td>
</tr>
</tbody>
</table>

† Dose equivalents for Qvar (TGA-registered CFC-free formulation of beclometasone dipropionate).
*Fluticasone furoate is not available as a low dose. TGA-registered formulations of fluticasone furoate contain a medium or high dose of fluticasone furoate and should only be prescribed as one inhalation once daily.

Note: The potency of generic formulations may differ from that of original formulations. Check TGA-approved product information for details.

Sources

Ceasing long-acting beta₂ agonist

Patients whose asthma is well controlled with an inhaled corticosteroid/long-acting beta₂ agonist combination (either as conventional maintenance treatment plus short-acting beta₂ agonist reliever, or as budesonide/formoterol maintenance-and-releiver therapy) can continue taking this regimen long-term. The dose can be reduced by stepping down through the available formulations.

Alternatively, for patients taking an inhaled corticosteroid/long-acting beta₂ agonist combination as maintenance treatment, the combination can be replaced with an inhaled corticosteroid inhaler at the same dose. However, a meta-analysis of several studies reported deterioration in asthma control after ceasing long-acting beta₂ agonist treatment in patients with asthma previously stabilised on inhaled corticosteroid/long-acting beta₂ agonist combination. Therefore, if inhaled corticosteroid/long-acting beta₂ agonist is replaced by inhaled corticosteroid only, patients should be advised to start taking their old combination inhaler again if asthma worsens within the first few days after switching.

Note: For patients taking fluticasone furoate/vilanterol, no studies are available to guide stepping down. Options include stepping down to inhaled corticosteroid alone (recommended in the TGA-approved Product Information), or stepping down to a different inhaled corticosteroid/long-acting beta₂ agonist combination that will achieve a lower inhaled corticosteroid dose. (e.g. Stepping down from treatment with once-daily medium dose fluticasone furoate/vilanterol [100/25 mcg] can be achieved by switching to twice-daily low-dose fluticasone propionate/salmeterol [100/50 mcg or 50/25 mcg]). With either option, patients need careful explanation, including clear written instructions, to avoid potential confusion when changing between inhaler devices and dosing frequencies.

Definition of variable expiratory airflow limitation

Most of the tests for variable expiratory airflow limitation are based on showing variability in FEV₁. While reduced FEV₁ may be seen with many other lung diseases (or due to poor spirometric technique), a reduced ratio of FEV₁ to FVC indicates airflow limitation. Normal FEV₁/FVC values derived from population studies vary, but are usually greater than:

- 0.85 in people aged up to 19 years
- 0.80 in people aged 20–39 years
- 0.75 in people aged 40–59 years
- 0.70 in people aged 60–80 years.

In children, it is less useful to define expiratory airflow limitation according to a specific cut-off for FEV₁/FVC ratio, because normal values in children change considerably with age.
Some spirometers provide predicted normal values specific to age group. If these are available, a FEV₁/FVC ratio less than the lower limit of normal (i.e. less than the 5th percentile of normal population) indicates airflow limitation.

Variable expiratory airflow limitation (beyond the range seen in healthy populations) can be documented if any of the following are recorded:

- A clinically important increase in FEV₁ (change in FEV₁ of at least 200 mL and 12% from baseline for adults, or at least 12% from baseline for children) 10–15 minutes after administration of bronchodilator
- Clinically important variation in lung function (at least 20% change in FEV₁) when measured repeatedly over time (e.g. spirometry on separate visits)
- A clinically important reduction in lung function (decrease in FEV₁ of at least 200 mL and 12% from baseline on spirometry, or decrease in peak expiratory flow rate by at least 20%) after exercise (formal laboratory-based exercise challenge testing uses different criteria for exercise-induced bronchoconstriction)
- A clinically important increase in lung function (at least 200 mL and 12% from baseline) after a trial of 4 or more weeks of treatment with an inhaled corticosteroid
- A clinically important variation in peak expiratory flow (diurnal variability of more than 10%)
- A clinically important reduction in lung function (15–20%, depending on the test) during a test for airway hyperresponsiveness (exercise challenge test or bronchial provocation test) measured by a respiratory function laboratory.

Notes

Patients referred to a respiratory function laboratory may be asked not to take certain medicines within a few hours to days before a spirometry visit.

A clinically important increase or decrease in lung function is defined as a change in FEV₁ of at least 200 mL and 12% from baseline for adults, or at least 12% from baseline for children, or a change in peak expiratory flow rate of at least 20% on the same meter. A clinically important increase in FVC after administering bronchodilator may also indicate reversible airflow limitation, but FVC is a less reliable measure in primary care because FVC may vary due to factors such as variation in inspiratory volume or expiratory time.

The finding of ‘normal’ lung function during symptoms reduces the probability that a patient has asthma, but a clinically important improvement in response to bronchodilator or inhaled corticosteroid can occur in patients whose baseline value is within the predicted normal range.

The greater the variation in lung function, the more certain is the diagnosis of asthma. However, people with longstanding asthma may develop fixed airflow limitation.

Reversibility in airflow limitation may not be detected if the person is already taking a long-acting beta₂ agonist or inhaled corticosteroid.

Airflow limitation can be transient and does not necessarily mean that the person has asthma (e.g. when recorded during a severe acute infection of the respiratory tract). Ideally, airflow limitation should be confirmed when the patient does not have a respiratory tract infection. Reduction in lung function during a respiratory tract infection with improvement in lung function after its resolution, commonly occurs in people with asthma, but can also be seen in patients with COPD or in healthy people without either asthma or COPD.

Go to: National Asthma Council Australia’s Spirometry Resources
Go to: National Asthma Council Australia and Woolcock Institute Peak Flow Chart

References

<table>
<thead>
<tr>
<th>Clinical profile</th>
<th>Lung function</th>
<th>Interpretation or action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical variable respiratory symptoms</td>
<td>Variable airflow limitation demonstrated</td>
<td>Consistent with asthma diagnosis. Note: In a patient with a confirmed diagnosis of asthma, these features are consistent with sub-optimal (poor or partial) asthma control and suggest treatment should be reviewed.</td>
</tr>
</tbody>
</table>
| | Variable airflow limitation not demonstrated | Obtain historical documentation of variable airflow limitation if possible. If not available, test again (either of):
| | | - Repeat lung function test during and after symptoms
| | | - Withhold bronchodilator treatment for required time \(^6\) then repeat spirometry before and 10–15 minutes after salbutamol.
| | | If diagnosis still not confirmed, consider bronchial provocation (challenge) test. **Note:** a negative challenge test would not rule out asthma in a person taking inhaled corticosteroids.
| | | Consider referral to a specialist respiratory physician to confirm the diagnosis. |
| **Current respiratory symptoms** | Fixed (irreversible or incompletely reversible) airflow limitation (post-bronchodilator FEV\(_1\)/FVC < lower limit of normal for age and FEV\(_1\) <80% predicted) | Obtain historical documentation of variable airflow limitation if possible.
| | | Ask about age at onset of symptoms and whether there were typical asthma symptoms earlier in life.
| | | Consider alternative (or additional) diagnosis (e.g. COPD in adults).
<p>| | | Consider referral to a specialist respiratory physician to confirm the diagnosis, if lung function does not improve after 3-6 months of treatment with inhaled corticosteroids. |
| Few respiratory symptoms | Variable airflow limitation not demonstrated | Obtain historical documentation of variable airflow limitation if possible. |</p>
<table>
<thead>
<tr>
<th>Clinical profile</th>
<th>Lung function</th>
<th>Interpretation or action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>If not available, consider back-titrating preventer by one step:†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduce inhaled corticosteroid dose by 50%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2–3 weeks later reassess lung function by spirometry before and 10–15 minutes after salbutamol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If still no evidence of variable airflow limitation, consider stopping preventer treatment (with close monitoring) and repeating spirometry another 2–3 weeks later.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If preventer is ceased and symptoms do not return at 2–3 weeks, review within 6 months.</td>
</tr>
</tbody>
</table>

Table applies to patients taking maintenance inhaled corticosteroid or combination inhaled corticosteroid/long-acting beta₂ agonist

‡ When spirometry is performed as a diagnostic test, inhaled bronchodilators should be withheld before the test. Withholding times vary between medicines:

- at least 4 hours for short-acting beta₂ agonists (e.g. salbutamol, terbutaline) and short-acting muscarinic antagonists (e.g. ipratropium)
- at least 12 hours for preventers containing long-acting beta₂ agonists for which twice-daily dosing is recommended (e.g. formoterol, salmeterol)
- at least 24 hours for long-acting muscarinic antagonists (e.g. aclidinium, glycopyrronium, tiotropium) and preventers containing long-acting beta₂ agonists with once-daily dosing (e.g. fluticasone furoate plus vilanterol).

Note: Requested withholding times may vary between centres that conduct formal lung function testing.

† For patients using inhaled corticosteroid/long-acting beta₂ agonist combinations, reduce the dose of inhaled corticosteroid component by 50%. For those already using the lowest possible dose of inhaled corticosteroid/long-acting beta₂ agonist combination, consider switching to low-dose inhaled corticosteroid or stopping preventer.

Before stepping down, document the patient’s current asthma status and risk factors, and ensure that the person has a written asthma action plan and an appointment for asthma review.
Table. Risk factors for adverse asthma outcomes in adults and adolescents

<table>
<thead>
<tr>
<th>Factors associated with increased risk of flare-ups</th>
<th>Medical history</th>
<th>Investigation findings</th>
<th>Other factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor asthma control</td>
<td>Poor control</td>
<td>Poor lung function (even if few symptoms)</td>
<td>Exposure to cigarette smoke (smoking or environmental exposure)</td>
</tr>
<tr>
<td>Any asthma flare-up during the previous 12 months</td>
<td></td>
<td>Difficulty perceiving airflow limitation or the severity of flare-ups</td>
<td>Socioeconomic disadvantage</td>
</tr>
<tr>
<td>Other concurrent chronic lung disease</td>
<td></td>
<td>Eosinophilic airway inflammation6</td>
<td>Use of illegal substances</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factors associated with increased risk of life-threatening asthma</th>
<th>Medical history</th>
<th>Investigation findings</th>
<th>Other factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intubation or admission to intensive care unit due to asthma (ever)</td>
<td></td>
<td>Sensitivity to an unavoidable allergen (e.g. Alternaria species of common moulds)</td>
<td>Inadequate treatment</td>
</tr>
<tr>
<td>2 or more hospitalisations for asthma in past year</td>
<td></td>
<td></td>
<td>Experience of side-effects of OCS use (may contribute to undertreatment or delayed presentation to hospital during flare-ups)</td>
</tr>
<tr>
<td>3 or more ED visits for asthma in the past year</td>
<td></td>
<td></td>
<td>Lack of written asthma action plan</td>
</tr>
<tr>
<td>Hospitalisation or ED visit for asthma in the past month</td>
<td></td>
<td></td>
<td>Socioeconomic disadvantage</td>
</tr>
<tr>
<td>High short-acting beta$_2$ agonist use (>2 canisters per month)</td>
<td></td>
<td></td>
<td>Living alone</td>
</tr>
<tr>
<td>History of delayed presentation to hospital during flare-ups</td>
<td></td>
<td></td>
<td>Mental illness</td>
</tr>
<tr>
<td>History of sudden-onset acute asthma</td>
<td></td>
<td></td>
<td>Use of alcohol or illegal substances</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td></td>
<td></td>
<td>Poor access to health care (e.g. rural/remote region)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factors associated with accelerated decline in lung function</th>
<th>Medical history</th>
<th>Investigation findings</th>
<th>Other factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic mucus hypersecretion</td>
<td></td>
<td>Poor lung function</td>
<td>Exposure to cigarette smoke (smoking or environmental exposure)</td>
</tr>
<tr>
<td>Medical history</td>
<td>Investigation findings</td>
<td>Other factors</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Severe asthma flare-up in a patient not taking ICS</td>
<td>Eosinophilic airway inflammation§</td>
<td>Occupational asthma</td>
<td></td>
</tr>
</tbody>
</table>

Factors associated with treatment-related adverse events

- Long-term high-dose ICS
- Frequent use of OCS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anxiety disorder (due to increased sensitivity to asthma symptoms and reluctance to reduce ICS dose when asthma well controlled)</td>
<td>Euphoria with OCS use</td>
</tr>
</tbody>
</table>

§ White cell differential count on a peripheral blood sample is not routinely recommended in the investigation and management of asthma, except for patients with severe refractory asthma. In research studies, peripheral blood eosinophilia suggests the presence of eosinophilic airway inflammation.

Sources

Back to top

Asset ID: 40
Before considering stepping up, check symptoms are due to asthma, inhaler technique is correct, and adherence is adequate.

Consider stepping up if good control is not achieved.

When asthma is stable and well controlled for more than 3 months, consider stepping down (e.g. reducing inhaled corticosteroid dose to low).

ICS: inhaled corticosteroid; SABA: short-acting beta₂ agonist; LABA: long-acting beta₂ agonist

* Or low-dose budesonide/formoterol combination, only for children aged 12 years or over who are using this combination as both maintenance and reliever.

§ In addition, manage flare-ups with extra treatment when they occur, and manage exercise-related asthma symptoms as indicated.

Back to top
Asset ID: 18
Before considering stepping up, check symptoms are due to asthma, inhaler technique is correct, and adherence is adequate.

Consider stepping up if good control is not achieved.

When asthma is stable and well controlled for 2–3 months, consider stepping down (e.g. reducing inhaled corticosteroid dose, or stopping long-acting beta2 agonist if inhaled corticosteroid dose is already low).

ICS: inhaled corticosteroid; SABA: short-acting beta2 agonist; LABA: long-acting beta2 agonist

* Reliever means rapid-onset beta2 agonist and includes:
 - short-acting beta2 agonists
 - low-dose budesonide/formoterol combination – only applies to patients using this combination in a maintenance-and-reliever regimen. (This combination is not classed as a reliever when used in a maintenance-only regimen).

§ In addition, manage flare-ups with extra treatment when they occur, and manage exercise-related asthma symptoms as indicated.
Supporting adolescents and young adults to self-manage their asthma

Recommendations

Make sure young people understand that they need to carry a reliever inhaler with them at all times, so they can use it immediately if they experience asthma symptoms.

- How this recommendation was developed
 - Consensus
 - Based on clinical experience and expert opinion (informed by evidence, where available).

Ensure every patient has a written asthma action plan appropriate to their age and self-management capability.

- How this recommendation was developed
 - Consensus
 - Based on clinical experience and expert opinion (informed by evidence, where available).

Encourage self-management and provide support and education appropriate to the individual’s stage of psychosocial development. Repeat the key information at each visit.

- How this recommendation was developed
 - Consensus
 - Based on clinical experience and expert opinion (informed by evidence, where available).

Offer self-management support that is appropriate to the person’s preferences (e.g. text message reminders about appointments, online information, electronic written asthma action plan) and direct them to appropriate resources and programs (e.g. peer-led asthma education, if available).

- How this recommendation was developed
 - Consensus
 - Based on clinical experience and expert opinion (informed by evidence, where available).

More information

Asthma self-management for adolescents

Children’s knowledge of asthma improves during adolescence. However, the latest available data show that less than one in five (18%) Australian adolescents has a written asthma action plan, and only 28% have discussed their asthma management plan with their GP within the previous 12 months.

During adolescence, young people get their asthma knowledge mainly from parents. Adolescents whose parents were born overseas in countries with a lower asthma prevalence may have less knowledge of asthma. Chronic disease carries stigma in some communities, particularly Asian cultures. Children and adolescents from culturally and linguistically
diverse communities may be expected to self-manage at a younger age and with less monitoring by parents, and so may need more support and education.

Specialised asthma nurses and asthma and respiratory educators are an invaluable resource for instruction, training and providing support for adolescents with asthma and their families.

Self-management programs

Asthma self-management education programs designed for adolescents can improve asthma-related quality of life, improve asthma knowledge, improve ability to use a spacer correctly, improve adolescents' confidence or belief in their ability (self-efficacy) to manage their asthma, increase behaviour to prevent asthma symptoms, increase use of preventer medicines, increase use of written asthma action plans, reduce symptoms, reduce limitation of activity due to asthma, reduce school absences due to asthma, and reduce rates of acute care visits, emergency department visits, and hospitalisations.

However, there is not enough evidence to determine which types of self-management programs for adolescents are most effective or the most important components of programs. (Few RCTs directly compared different programs.)

Most of the asthma programs designed for adolescents have been run in schools.

Peer-led asthma programs

Several studies have shown that adolescents can be trained to teach their peers about asthma self-management and motivate them to avoid smoking. Asthma self-management programs for adolescents that use peer leaders can:

- significantly influence self-management behaviour, compared with adult-led programs
- achieve clinically important improvements in health-related quality of life, increase adolescents' belief in their ability (self-efficacy) to resist smoking, and increase asthma self-management knowledge (compared with adolescents at schools not involved in this type of program or with baseline)
- may be particularly beneficial for boys from low socioeconomic status background.

The Triple A (Adolescent Asthma Action) program is a school-based peer-led adolescent asthma self-management education program developed in Australia.

Use of technology to support self-care

Providing asthma education messages through technologies that adolescents use every day (e.g. internet, phones, interactive video) may be an effective way to deliver asthma health messages, compared with traditional media or with strategies that are not tailored for adolescents.

Resources for health professionals working with adolescents

Go to: The Royal Australasian College of Physicians' Working with young people online resource
Go to: Headspace: Australia's National Youth Mental Health Foundation
Go to: Inspire Foundation
Go to: Reachout
Go to: The Royal Children's Hospital Melbourne's Transition - for health professionals
Go to: NSW Agency for Clinical Innovation's Transition planning checklist
Go to: NSW Centre for Advancement of Adolescent Health, The Children's Hospital at Westmead's Adolescent health GP resources
Go to: ChiPS (Chronic Illness Peer Support)
Go to: Relationships Australia
Go to: Smarter than Smoking
Go to: The Children's Hospital at Westmead's Kids Quit smoking cessation brief interventions

Transition to adult asthma care

The late teens and early twenties can be a dangerous period for young people with asthma because GPs and parents often assume that the parent's good management of their child's asthma will automatically continue as the child grows up. Good self-management cannot be assumed, and health professionals need to carefully check the patient's understanding of their asthma and its treatment.
Equipping and supporting an adolescent with a chronic disease to take over self-management of their condition as they grow up and make a smooth transition to adult health services requires planning. Some experts consider this in three phases:

- **early stage (12–14 years)** – the adolescent begins to participate in his or her own care
- **middle stage (15–16 years)** – the adolescent gains skills and information to take over self-care
- **late stage (17–18 years)** – the young person moves into the adult system.

References